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(Preprint) AAS 10-134 
 
 
 
 

LINEARIZED ORBIT COVARIANCE GENERATION AND 
PROPAGATION ANALYSIS  

VIA SIMPLE MONTE CARLO SIMULATIONS 
 

Chris Sabol*, Thomas Sukut†, Keric Hill‡, Kyle T. Alfriend§,  
Brendan Wright**, You Li**, and Paul Schumacher* 

 
 

Monte Carlo simulations are used to explore how well covariance 
represents orbit state estimation and prediction errors when fitting to 
normally distributed, zero mean error observation data.  The covariance 
is generated as a product of a least-squares differential corrector, which 
estimates the state in either Cartesian coordinates or mean equinoctial 
elements, and propagated using linearized dynamics.  Radar range and 
angles observations of a LEO satellite are generated for either a single 
two-minute radar pass or catalog-class scenario.  State error 
distributions at the estimation epoch and after propagation are analyzed 
in Cartesian, equinoctial, or curvilinear coordinates.  Results show that 
the covariance is representative of the state error distribution at the 
estimation epoch for all state representations; however, the Cartesian 
representation of the covariance rapidly fails to represent the error 
distribution when propagated away from epoch due to the linear nature 
of the comparison coordinate system, not the linearization of the 
dynamics used in the covariance propagation.  Analysis demonstrates 
that dynamic nonlinearity ultimately drives the error distribution to be 
non-Gaussian in element space despite the fact that sample distribution 
second moment terms appear to remain consistent with the propagated 
covariance.  Lastly, the results show the importance of using as much 
precision as possible when dealing with ill-conditioned covariance 
matrices. 

 
INTRODUCTION 
 
 As part of the orbit estimation process, state uncertainties are often derived from covariance 
information.  For weighted batch least squares and Kalman-type filtering approaches, the 
covariance information gives the trajectory error ellipsoid provided certain assumptions are met.1  
These assumptions usually include independent, normally distributed, zero mean observation 
errors and representative linearized dynamics.  This paper uses simple Monte Carlo simulations to 
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explore how well the covariance represents orbit state estimation errors when the independent, 
normally distributed, zero mean observation error assumption is met.  The covariance is estimated 
and propagated using the linear state transition matrix in both Cartesian and mean equinoctial 
states, and state error distributions are considered in Cartesian, equinoctial, and curvilinear 
coordinates.   
 
 Meaningful orbit error distribution functions are the cornerstone to dynamic command and 
control applications, and many current approaches assume a Gaussian distribution, which is 
represented by a linearly propagated covariance matrix.  Sensor tasking, track association, and 
probability of collision calculations are all example applications that aim to take advantage of 
covariance information.2-5  This paper does not address the large spectrum of reasons why 
covariance information may not be representative of the true orbit error distribution function, 
such as non-Gaussian and autocorrelated observation errors and unmodeled perturbations.  The 
analysis documented here ensures zero mean Gaussian observation errors and well modeled 
dynamics to focus on the common practice of using linearized state transition dynamics to form 
and propagate covariance information as a representation of the orbit error distribution.  The 
analysis framework has been established to allow investigation of the impact of non-Gaussian and 
autocorrelated observation errors as well as mismodeled dynamics, which may be the subject of 
future work.  
 
 This is not a new subject of research.  Junkins, et al, developed a linearity index and compared 
the performance of linear covariance propagation in Cartesian, polar, and Keplerian element-
based orbit states.6  These results demonstrated that an element-based formulation maintains a 
Gaussian distribution better than the polar and much better than the Cartesian representations.  
The analysis did not, however, form the initial covariance from observation data or make an 
attempt to separate impact of the linearized dynamics and the comparison frame.  This work 
demonstrates that one should make a distinction between the two.  Park and Scheeres investigated 
the use of incorporating higher order effects into the uncertainty propagation and also developed a 
nonlinearity index to indicate when these effects were important.7  While the mathematical 
development is applicable to all state representations, their analysis focused on Cartesian states 
and it is again unclear whether the higher order terms are accounting for dynamic nonlinearities 
or attempting to describe a bending distribution in linear coordinate space.  Vallado and Seago 
studied covariance realism using real data test cases.8  This analysis provided great insight into 
various metrics used to describe how Gaussian the error distribution is and, being based on real 
data, the results do reflect real world conditions; however, the analysis was limited to Cartesian 
space, a great deal of the analysis focused on comparing position error standard deviations to the 
covariance based predictions, which is admittedly insufficient, and one cannot distinguish what is 
the root cause of any differences that arise.  Similarly Kelecy and Jah have used Monte Carlo 
analysis to evaluate orbit error distributions in the presence of nonconservative dynamic 
mismodeling, but do not distinguish whether the observed non-Gaussian error distributions are 
due to the dynamic mismodeling or the limitations of the Cartesian state representation as 
demonstrated by Junkins, et al, and reproduced here.9  Lastly, Denham and Pines considered the 
impact of linearizing the observation-state mapping (measurement partials) in the formation of 
the Kalman gain; based on the findings of that work, the cases considered here should be 
insensitive to those effects but it is mentioned since many current orbit determination scenarios 
may be sensitive to this assumption.10 
 

The rest of this paper describes how the simple Monte Carlo analysis was completed and then 
presents the results.  Conclusions are drawn which expand upon the previous work cited above. 
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APPROACH 
 

In this paper, a single low Earth satellite is considered with a semimajor axis of 7000km, near 
zero eccentricity, and two degree inclination.  In order to conduct the simulation studies, a “truth” 
orbit was propagated for ten days.  Perfect range, azimuth, and elevation observations were 
generated for an equatorial tracking station based upon the truth orbit.  These steps were 
performed just once.  The simple Monte Carlo analysis involved corrupting the perfect 
observations with Gaussian noise using the GASDEV algorithm from Numerical Recipes.11  The 
noise standard deviations were 30m and 36arcsec for the range and angles, respectively, with the 
intent of simulating errors representative of space surveillance radar systems.12  A weighted batch 
least squares differential correction was then used to generate an estimated orbit from the 
imperfect observations.  The resulting estimated orbit was then propagated forward and compared 
to the truth orbit.  The differences between the trajectories are the state errors:   
 
 X t  Xest t Xtruth t  (1) 

 
In addition to the calculation of the state deviations, the number of standard deviations the 
estimated state differs from the truth in covariance-based hyperellipsoid space is calculated by: 
 
 k2  XT t P1 t X t  (2) 

 
where P(t) is the covariance of the estimated state at the comparison time.1  The k parameter, 
called ℓ in Reference 1, can also be thought of as a 2 statistic or Mahalanobis distance between 
the true and estimated states.13  Figure 1 represents this process graphically.  It should be noted 
that if the dynamics are conservative and the error distribution function remains consistent, k will 
be time invariant for a given sample. 
 

 
 

Figure 1. Generation of Orbit State Errors 
 
 

In the Monte Carlo analysis, the simulated observations, estimated orbit, state error and k 
values are generated 1000 times.  From the resulting state errors, one could construct a 
probability distribution function of the k values.  If the state error distribution was truly Gaussian, 
then the k probability distribution function in six dimensional space would take the form of: 
 

 F k  1
1

8






k 4  4k2  8 exp 0.5k2  (3) 
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In addition to examining the k values, the mean, standard deviations, and correlation 

coefficients of the state parameters were calculated and compared to the covariance predicted 
values.  However, in order to compare the sampled standard deviation and correlation data to 
covariance predicted values, care had to be taken to ensure the covariance was linearized about 
the truth orbit.  Thus, a special case was run with perfect observations to ensure the differential 
correction converged to the truth orbit; the 30m and 36arcsec data weights were still used in this 
case to generate the desired covariance. 
 

The orbit propagation, observation simulation, and orbit determination were all conducted 
using the R&D version of the Goddard Trajectory Determination System (R&D GTDS).14  For all 
cases discussed in this study, only J2 dynamics were used.  The truth and Cartesian-based cases 
were generated using the Cowell special perturbations propagator operating in J2000 Earth 
Centered Inertial (ECI) coordinates.  The Draper Semianalytic Satellite Theory (DSST) was used 
to investigate the equinoctial element cases, again in J2000 ECI.15,16  The equinoctial orbital 
elements are related to the classic Keplerian orbital elements by:17 
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Considerable analysis of applying DSST to orbit estimation problems has occurred by Paul 

Cefola’s Massachusetts Institute of Technology graduate students over the years with very 
notable contributions relevant to this work coming from Taylor and Carter.18,19  In order to 
generate a DSST mean equinoctial element representation of the truth, a DSST trajectory was fit 
to the Cowell truth over the ten day span of interest; the Cowell truth was represented by position 
and velocity vectors at ten minute intervals for this precise conversion of elements process.  The 
resulting DSST truth matched the Cowell truth to within a few meters over the entire span.  For 
the Monte Carlo studies, all differential corrections used this truth data, with epoch at the first 
observation, as initial conditions to ensure rapid convergence.  Conversion from Cartesian 
covariance to equinoctial covariance space was made using a linear Jacobian transformation using 
the partial derivatives in Reference 15, with two exceptions: 
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The former has since been corrected in the on-line version of the reference and the later was 
demonstrated to be functionally equivalent to the reference.   
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In addition to Cartesian and equinoctial element state representations, the study also 
considered curvilinear coordinates as defined by Hill.4  Curvilinear coordinates are derived from 
Cartesian but the reference frame follows the shape of the orbit.  For the curvilinear cases, the 
Cartesian states and propagated covariance are used but then converted into the curvilinear frame 
using the methods described in Reference 4.  It should be highlighted that the curvilinear 
“covariance” does not incorporate the full six dimensional Cartesian covariance matrix; rather, it 
is derived from two separate three dimensional transformations for the position and velocity and 
cross-correlation terms between the two are ignored.   
 

Simulation scenarios include both single two-minute radar pass and catalog-class cases for a 
low-Earth satellite.  The difference between the scenarios is the amount of observation data input 
into the differential corrections.  For the two-minute pass scenario, the estimated initial states and 
covariance were derived from a single track of radar data consisting of range, azimuth and 
elevation observations every ten seconds for two minutes (13 total observation triplets).  The 
observation data began at 30 deg elevation rising and ended right at the 70 deg culmination.  This 
data set resulted in ~100m of error at epoch and ~130km/day error growth.  Some additional 
analysis did vary the fit span, but each case began at 30 deg elevation rising and maintained an 
observation frequency of an observation triplet every ten seconds.  For the catalog scenario, six 
full radar passes that spanned a little less than ten hours were input into the differential 
corrections.  This data set resulted in tens of meters of error at epoch and ~60m/day error growth.  
It should be noted that the observation data type, quantity, and quality all significantly impact the 
estimated orbit error distribution; the cases studied here are meant to be generically representative 
of common low Earth space surveillance scenarios and the results cannot assumed to be valid for 
all orbit determination applications. 
 

The R&D GTDS components of the simulations were wrapped using perl scripting language 
and the runs were executed on the Maui High Performance Computing Center’s Mana system. 
 
RESULTS 
 

The first results considered are for the catalog-class scenario where the estimation errors are 
considerably smaller than for the single-pass case and one would expect the linearized covariance 
generation and propagation to be more effective.  Figure 2 plots the k-value cumulative 
probability density function for the Cartesian representation of the orbit state and covariance; the 
thick, red line in the figure comes from Eq. (3) and represents the theoretical distribution if the 
distribution were Gaussian.  For a Gaussian error distribution, k represents the number of standard 
deviations the sample error is away from truth; if one needs more standard deviations to capture 
the sample errors, the k distribution will flatten out and degrade from the theoretical distribution.  
One can see in Figure 2 that the Cartesian representation remains Gaussian for approximately 
three days before degrading.  As the prediction interval increases, the percentage of sampled 
errors that remain within the covariance predicted Gaussian distribution decreases. 

 
Figure 3 compares the second moment terms of the observed error distribution to those 

predicted by the covariance matrix.  For the standard deviation terms, the ratios of the sample 
standard deviation over the covariance predicted standard deviation are plotted.  For the 
correlation terms, the differences between the sample correlation coefficients and the covariance 
predicted correlation coefficients are plotted.  Despite the k distribution degrading after three 
days, the comparisons between the sample distribution second moment terms and the covariance 
predicted values appear to be reasonable.  It is difficult to judge the meaning of the correlation 
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differences; even though the differences are small, the ratios of the values could be several fold if 
the correlation coefficient was small.  It was observed that when the correlation coefficients were 
moderately sized, above 0.3 for instance, the ratios had much greater agreement.  These results 
raise the question “is the k distribution degradation due to non-Gaussian errors evident in the 
small correlation terms or the numerical covariance matrix inversion required to compute the k 
values?”  This will be explored after discussion of the element-based results. 

 

 
Figure 2. Cartesian k Distributions Compared to Theoretical Values for the Catalog-Class Scenario 

 

 
Figure 3. Cartesian Standard Deviation and Correlation Coefficient Comparisons to between  

Monte Carlo Samples and Covariance Values for the Catalog-Class Scenario 
 

Figure 4 plots the k-value cumulative probability density function for the DSST mean 
equinoctial representation of the orbit state and covariance; again, the thick, red line in the figure 
represents the theoretical distribution if the distribution were Gaussian.  All of the k distribution 
curves lie on top of one another and one can see that the element-based representation remains 
consistent with the Gaussian theoretical distribution over the entire ten day span.  This indicates 
that the linearization of the state dynamics is a very good approximation for this error magnitude 
(hundreds of meters).  Figure 5 compares the second moment terms of the observed error 
distribution to those predicted by the covariance matrix and shows the same level of agreement as 
the Cartesian case.   
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Figure 4. Element k Distributions Compared to Theoretical Values for the Catalog-Class Scenario 

 

 
Figure 5. Element Standard Deviation and Correlation Coefficient Comparisons to between Monte 

Carlo Samples and Covariance Values for the Catalog-Class Scenario 
 

The k-distributions show the element-based error distribution remained Gaussian and well 
characterized by the predicted covariance.  By transforming the Cartesian-based results into 
equinoctial element space, insight can be gained into what the source of k-distribution 
degradation is for the Cartesian case.  The Cartesian states were converted into osculating 
equinoctial element states using the full nonlinear transformation while the covariance was 
converted using a linearized Jacobian matrix at each time step; thus, the Cartesian dynamics were 
used to propagate the state and covariance, and only the matrix inversion and the comparison 
frame were different from the straight Cartesian results.  Figure 6 plots the k-value cumulative 
probability density function for the Cartesian-to-equinoctial (C2El) element representation of the 
orbit state and covariance.  Like the DSST case, all of the k-distributions lie on top of one another 
and one can see excellent agreement over the ten day prediction span.  These results demonstrate 
that the linearized dynamics used in the Cartesian representation are not a bad assumption for this 
scenario.  This is new insight to what previous work has shown. 
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Figure 6. Cartesian-to-Element k Distributions Compared to Theoretical Values for the  

Catalog-Class Scenario 
 

The question for the Cartesian representation then becomes “is the k distribution degradation 
due to the geometrical limitations of the Cartesian comparison frame or the numerical covariance 
matrix inversion required to compute the k values?”  The matrix inversion for this analysis used a 
perl library routine that used LR decomposition modeled after a LAPACK library.20  R&D GTDS 
also uses an iterative decomposition to form the covariance matrix from the information matrix in 
the differential correction process.21  In order to test the numerical stability of the matrix 
inversion, two metrics were considered: 1) the condition number of the covariance matrix, and 2) 
the inversion residuals.  The inversion residual is defined as the Frobenius norm (or 2-norm) of 
the identity matrix minus the product of the calculated inverse covariance times the covariance: 
 

 Ir  I  P1 t P t 
2
 (7) 

 
This inversion residual alone is a poor metric for a near singular case as one can have small 
residual yet still be far from the desired answer due to the large space within the precision of the 
inversion algorithm.  By studying both the condition number and the inversion residual, one can 
get a slightly better view of the accuracy of the matrix inversion.  Figure 7 plots the condition 
number for each of the covariance representations as a function of day while Figure 8 plots the 
inverse residuals.  One can see that the condition number of the Cartesian covariance remains 
within 64-bit precision (1016) and the inversion residual remains well behaved until after day 4.  
Recall that the Cartesian k-distribution began to degrade between days three and four.  This 
indicates that the primary reason for the Cartesian covariance failing to adequately represent the 
true error distribution is the linearity of the Cartesian reference frame; however, in this particular 
treatment, numerical precision issues are not far behind.  These precision issues may be mitigated 
through more clever numerical methods but, regardless, the results show there are immense 
benefits of simply switching to an alternate state representation. 
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Figure 7. Covariance Matrix Condition Numbers for the Catalog-Class Scenario 

 

 
Figure 8. Covariance Matrix Inversion Residuals for the Catalog-Class Scenario 

 
If the primary failure of the Cartesian representation of the covariance is the linear geometric 

reference frame, this has two implications.  First, it shows that the general structure of the 
covariance matrix can match the second moment characteristics of the sampled error deviations, 
as shown in Figure 3, and the true error distribution may not be Gaussian.  Thus, this is an 
insufficient approach for ascertaining covariance realism.  Second, the fact that the Cartesian 
representation does not represent the true error distribution after a few days has significant 
implications for approaches that calculate the probability of collision between satellites in linear 
reference frames.  For the case studies here, even with zero-mean, normally distributed 
observation errors and well represented dynamics, the Cartesian representation of the orbit error 
distribution was not Gaussian after three days and thus any probability of collision calculation 
that assumed a Gaussian distribution could give a false answer. 
 

Next, attention is given to the single two-minute radar pass scenario.  In this scenario, the 
small amount of available observation data results in large initial orbit uncertainty.  These large 
uncertainties will highlight any shortcomings in the linearization assumptions, both geometric and 
dynamic.  For the Cartesian case, the numerical aspects of the covariance inversion results in 
negative k-squared values after four days or so.  The k distribution degrades from the theoretical 
Gaussian values much, much faster than that.  Figure 9 plots the k distribution for the Cartesian 
case for the first ten hours after epoch.  One can see that the initial error distribution remains 
Gaussian and well represented by the covariance; however, even at the one hour point, the 
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distribution has degraded.  Figure 10 compares the second moment terms of the observed error 
distribution to those predicted by the covariance matrix.  Again, one can see what appears to be 
reasonable agreement between the two, but the catalog-class scenario has already demonstrated 
that this is not necessarily an indicator of whether the error distribution is Gaussian and 
represented by the covariance matrix.  Since the errors are over three orders of magnitude larger 
for the single pass case, however, it is worth exploring the root cause of the Cartesian 
representation of the error distribution becoming non-Gaussian. 
 

 
Figure 9. Cartesian k Distributions Compared to Theoretical Values for the  

Two-Minute Radar Pass Scenario 
 

 
Figure 10. Cartesian Standard Deviation and Correlation Coefficient Comparisons to between Monte 

Carlo Samples and Covariance Values for the Two-Minute Radar Pass Scenario 
 

Like the catalog-class scenario, the Cartesian states were then converted into osculating 
equinoctial element space using the full nonlinear transformation and the covariance was 
converted using a linearized Jacobian matrix at each time step; thus, the Cartesian dynamics were 
used to propagate the state and covariance and only the matrix inversion and the comparison 
frame were different from the straight Cartesian results.  Figure 11 plots the k-value cumulative 
probability density function for the Cartesian-to-equinoctial (C2El) element representation of the 
orbit state and covariance.  Once again, one can see a dramatic improvement and the Gaussian 
distribution holds for days rather than minutes in the orbital element comparison frame; thus, like 
the catalog-class scenario, the primary limitation of the Cartesian representation of the error 
distribution is the linear comparison frame and not the linearized dynamics.   
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 Figure 11 only contains comparisons out to four days since, as previously mentioned, 
numerical issues drove some of the k-squared values from Eq. (2) to negative numbers.  Even in 
element space, the k distributions drift away from the Gaussian values between days two and 
three.   
 

 
Figure 11. Cartesian-to-Element k Distributions Compared to Theoretical Values for the  

Two-Minute Radar Pass Scenario 
 

Figure 12 plots the k distributions for the mean equinoctial element case and Figure 13 plots 
the comparisons between the second moment terms of the observed error distribution and those 
predicted by the covariance matrix.  Like the catalog-class scenario, one can immediately see that 
the elements dramatically outperform the Cartesian representation and the numerical challenges 
that produce negative k-squared values did not appear in the ten day comparison interval.  Unlike 
the catalog-class results, however, the k-distributions do degrade from the Gaussian distribution.  
Despite this degradation, the second moment terms are still consistent with the covariance-
predicted values.  Comparing the native element results of Figure 12 to the Cartesian-to-element 
conversion results shows very similar behavior for the first three days.  On the fourth day, 
however, the native element formulation shows far less k distribution degradation than the 
Cartesian-to-element conversion results.  Since the element representation of the orbit errors 
should be fairly immune to the geometric limitations of the Cartesian comparison frame, one can 
assume that these deviations from the Gaussian distribution is either due to nonlinearity of the 
dynamics or numerical challenges associated with the covariance matrix inversion.  Given the 
negative k-squared values that surface in the Cartesian case after day four, one would naturally be 
wary of the numerical validity of the Cartesian-to-element conversion results in this time span. 
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Figure 12. Element k Distributions Compared to Theoretical Values for the  

Two-Minute Radar Pass Scenario 
 

 
Figure 13. Element Standard Deviation and Correlation Coefficient Comparisons to between Monte 

Carlo Samples and Covariance Values for the Two-Minute Radar Pass Scenario 
 

Figure 14 plots the condition number for each of the covariance representation as a function of 
time while Figure 15 plots the inverse residuals.  One can see that the condition number of the 
Cartesian covariance remains within 64-bit precision (1016) until after hour 4 and the inversion 
residual remains begin to grow shortly thereafter.  Recall, the Cartesian k distributions deviate 
from Gaussian within the first hour indicating that the primary reason for the Cartesian 
covariance failing to adequately represent the true error distribution is the linearity of the 
Cartesian reference frame and not related to numerical challenges, just like the catalog-class 
scenario.  The element-based covariance condition numbers and inversion residuals are well-
behaved across the span of study.  This indicates that the deviation from a Gaussian distribution is 
due to the linearized dynamics used to propagate the covariance.  It also suggests that, since the 
native element results are better behaved than the Cartesian-to-element conversion results at day 
4, that an element-based formulation of the dynamics has an inherent advantage over a Cartesian 
representation in terms of dynamic linearity. 
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Figure 14. Covariance Matrix Condition Numbers for the Two-Minute Radar Pass Scenario 

 

 
Figure 15. Covariance Matrix Inversion Residuals for the Two-Minute Radar Pass Scenario 

 
In order to further investigate whether dynamic nonlinearities were driving the element 

representation of the error distributions away from Gaussian for the single radar pass scenario, 
uncertainty volume distributions that did not use the entire six dimensional covariance matrix 
were considered.  First, the curvilinear coordinate system defined by Hill was investigated.4  The 
curvilinear coordinates conform to the elliptical shape of the reference orbit and are therefore free 
from the geometric linearity challenges of the Cartesian comparison frame but they are derived 
from the same Cartesian position and velocity covariance terms.  However, the k-values 
computed in curvilinear coordinates do not incorporate the position and velocity cross-correlation 
terms where one would expect dynamic nonlinearities to first appear.  Figure 16 plots the k 
distributions for the curvilinear comparisons.  One can see that the curvilinear distribution holds 
close to the ideal over the full ten day span.  This provides further indication that dynamic 
nonlinearity was driving the single radar pass element-based results away from a Gaussian 
distribution.  It should be noted that since the curvilinear k-values are not derived from the full six 
dimensional uncertainty, one would not expect the curvilinear k distribution to match the 
theoretical six-dimensional Gaussian distribution, but the theoretical curve is maintained in the 
figure for reference.  In this case, the consistency of the curvilinear k distribution is of more 
interest. 
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Figure 16. Curvilinear k Distributions Compared to Ideal Values for the  

Two-Minute Radar Pass Scenario 
 

Since the k-values in curvilinear coordinates do not incorporate the position and velocity 
cross-correlation terms, the comparisons in curvilinear space are essentially throwing out 9 of the 
21 second moment terms.  If one chooses to apply the same logic in equinoctial element space, 
one would ignore the cross-correlation terms between the slowly changing elements and the mean 
longitude.  In fact, consistent k distributions can be shown in element space by setting the 
eccentricity and mean longitude correlation terms to zero, thus only 2 of the 21 second moment 
terms are ignored.  It’s not clear to the authors why the eccentricity and mean longitude 
correlation terms are the critical terms.  Figure 17 plots the k distributions for this case.  Like the 
curvilinear case, dramatic improvements in the k distribution consistency are seen when 
compared to the full six dimensional covariance case shown in Figure 12.  The k distributions do 
shift left when the correlation terms are set to zero in the propagated covariance since by zeroing 
out the correlation terms, the effective covariance becomes larger and, thus, the k values required 
to reach the sample errors become smaller.  Unfortunately, such incomplete descriptions of the 
uncertainty distributions are not useful for all applications; however, they do have potential to 
support applications such as uncorrelated track association if full non-linear approaches are not 
sufficiently mature.  In this case, one is ignoring information in the error distribution and 
effectively inflating the association space; however, the k distribution does remain consistent for 
considerably longer, which is key if the k value is to be used as an association metric. 
 

 
Figure 17. Element k Distributions to Theory for the Two-Minute Radar Pass Scenario  

when Eccentricity and Mean Longitude Cross-Correlation Terms are Ignored 
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As the quality and quantity of observation data varies, the magnitude of the estimated 

uncertainty will vary and the impact of dynamic nonlinearity on the propagated error distribution 
will change.  The last results presented here examine how long the equinoctial element error 
distribution remains Gaussian with different numbers of radar observation triplets and track 
lengths.  For each case, the observation frequency remains at one observation triplet every ten 
seconds and the track length is then ten seconds times one minus the total number of observation 
triplets, e.g. 13 observation triplets is a two minute track.  Figure 18 plots the k distributions at 
epoch, day 2, and day 4 for cases using 5, 7, 10, 13 (the same results from above), 19, and 26 
observation triplets.  The 26 observation triplet case represents the entire 4min 10s pass of data 
above 30 deg elevation.  One can see that for all cases, the error distribution is fairly Gaussian 
and well represented by the covariance at epoch.  As expected, the cases with fewer observation 
data become non-Gaussian faster due to the nonlinear dynamics and are not well represented by 
the predicted covariance.   

 

 
Figure 18. Equinoctial Element k Distributions for Single Radar Passes of Various Track Lengths 

and Data Amounts 
 

The variation of when and impact of how much the nonlinearities drive the element state error 
distributions away from Gaussian for these short arc examples highlights the need to be aware of 
these effects.  For command and control applications that utilize the error distribution, either a 
linearity index should be implemented to test the assumptions of linearized dynamics and the 
resulting Gaussian distribution or one should consider using nonlinear error distribution 
propagation and representation.6,7,22 
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CONCLUSIONS 
 

These results, consistent with previous literature, confirm that the state representation one 
chooses can have a significant impact on how well the covariance reflects the actual state error 
distribution.  New to this work include the distinction between the impact of linearized dynamics 
in the covariance propagation and the geometric linearity of the Cartesian reference frame.  
Analysis shows that the primary reason for Cartesian representations of the orbit error distribution 
becoming non-Gaussian are due to the limitations of the linear geometric reference frame and not 
the linearized dynamics used to propagate the covariance.  This limitation has implications for 
command and control applications, such as calculating the probability of collision between 
satellites, that use a Cartesian covariance and assume a Gaussian orbit error distribution.  These 
geometric limitations are easily overcome by transforming the state into element space.  The 
results indicate that an element-based formulation of the state dynamics may be more linear than 
the Cartesian-based formulation; thus, there is an inherent advantage of working natively in 
element space.   
 

Analysis of the catalog-class scenario showed that an element representation of the covariance 
remained Gaussian and represented the state error distribution that resulted from the Monte Carlo 
simulations.  These results showed that linearized dynamics are adequate for covariance 
propagation for error magnitudes on the order of hundreds of meters.  For the single two-minute 
radar pass scenario, the error magnitudes are much larger, tens to hundreds of kilometers, and 
dynamic nonlinearity drives the state error distribution to be non-Gaussian.  Utilizing 64-bit 
numerical precision is important for these cases.  The span for which the error distributions 
remained Gaussian varied greatly as a function of the observation span and number of 
observations.  If one is dealing with large uncertainty volumes, it may be wise to utilize one of the 
previously developed nonlinearity indices to see if the Gaussian assumption holds or to employ 
nonlinear techniques.  It should be noted that the observation data type, quantity, and quality all 
significantly impact the estimated orbit error distribution; the cases studied here are meant to be 
generically representative of common low Earth space surveillance scenarios and the results 
cannot assumed to be valid for all orbit determination applications. 
 

If one has an application, such as uncorrelated track association, where one can choose to 
disregard correlation terms in the covariance matrix such as position-velocity cross-correlations 
or mean longitude cross-correlations in equinoctial element space, then one can maintain a 
consistent distribution in that subset of the total uncertainty space for considerably longer.  This 
comes at the cost of ignoring information and the ideal solution is to capture the nonlinear 
dynamics and utilize the true error distribution.   
 

On a positive note, the simulations showed that all of the initial state error distributions, 
Cartesian and element based, were Gaussian at epoch as one would hope given the zero mean 
Gaussian error observations.  Thus, classic estimation techniques may still be suitable even if 
nonlinear uncertainty propagation and exploitation techniques are needed for prediction purposes.  
Further analysis is needed to study the impact of non-Gaussian, autocorrelated observation errors 
and force modeling errors in the orbit determination process. 
 

Lastly, the results of the simple Monte Carlo simulations show that even as the state error 
distribution becomes non-Gaussian, the second moment terms of the sample error distribution 
may still appear consistent with the terms in the covariance matrix.  Therefore, calculating the 
standard deviation and correlation terms of the sampled state error distribution and finding 
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agreement with the covariance matrix is an insufficient test of covariance realism and the 
Gaussian nature of the true error distribution.  Even if the covariance reflects the second moment 
terms of the true error distribution, it does not provide insight into whether higher moments are 
needed. 
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